Wednesday 27 November 2013

CYCLIC GROUPS

A group G is called a cyclic group if ∃ a ∈ G such that each element of G can be written as an integral power of a  i.e.,  if b ∈ G, then ∃ a ∈ G such that b = an for some integer n.
a is then called a generator of G.

Note: (i) If G is a cyclic group generated by a, we write it as G = <a>.
           (ii) If G is a group under addition, then G is called a cyclic group if each element of G is an integral multiple of a  i.e.,   if b ∈ G, then b = na for some integer n.
         (iii) A cyclic group is also called a Monic group.
         (iv) If G = <a> be a cyclic group of order n, then
                     G = {e, a, a2,..., an-1}    i.e.,  O(G) = O(a) = n.
         (v) If a is a generator of a cyclic group G, then a-1 is also a generator of G, for, any 
x ∈ G, we have x = an , also x = (a-1)-n , where n, -n ∈ .

Example: Give an example of a group having all proper subgroups as cyclic but the group itself is not cyclic.
Sol. Consider the group
                 S3 = {i, (12), (13), (23), (123), (132)}
the symmetric group on three numbers 1, 2 and 3. Then
       All the proper subgroups of Sare
                H1 = {i, (12)} = <(12)>
                H{i, (13)} = <(13)>
                H{i, (23)} = <(23)>
                H{i, (123), (132)} = <(123)>
Which are cyclic, but the group Sis not cyclic as there does not exist an element   G   s.t.  O(a) = 6.

Theorem: An infinite cyclic group has precisely two generators.
Proof. Let G = <a> be an infinite cyclic group.
Now, any element  G can be written as
                      x = am
also               x = (a-1)-m , ∈ I.
∴   G has two generators a and a-1.
Let ∈ G be any other generator of G.
i.e., G = <b>.
Now  G    and    G = <b>
a = bn    where   ∈ I.
b = am   where   ∈ I.
∴  a = b= (am)n = amn.
⇒ amn-1 = e                                                  [By cancellation law]
⇒ O(a) = mn - 1, which is finite.
But G is an infinite cyclic group.
above result holds if mn - 1 = 0   i.e.,  mn = 1
⇒   m = (1/n)   but    m, ∈ I.
⇒   m = n = ± 1
∴   b = a1   or   a-1.
Hence infinite cyclic group has precisely two generators.

Theorem: Every finite group of composite order pessesses proper subgroup.
Proof: Let G be a finite group of composite order mn.
i.e., O(G) = mn,     where   m > 1, n >1.


Case I. When G is cyclic.
    Let G = <a>     where O(a) = O(G) = mn
    ⇒ amn = e
    ⇒ (am)= e.
    Let H be a cyclic group generated by am
   i.e.,   H = <am> = {aa2m a3m , ... , amn = e}
   ∴  O(H) = n.
   Also, since 2  ≤ mn.
   Thus H is a proper subgroup of G.

Case II. When G is not cyclic.
    Since G is not cyclic.
    Therefore G has no element of order mn.
    Moreover order of each element of G is less than mn.
    ∴ ∃ an element a of G such that O(a) = k, 
    where  ≤ mn.
    Let H = <a> be a cyclic group generated by a.
    Then   O(H) = O(a) = k < mn.
    Hence H is a proper subgroup of G.

Thursday 14 November 2013

Properties of Cosets

If H is a subgroup of a group G. then

Property I.       (i) Ha = H    iff    H.

                            (ii) aH = H    iff    H.

Proof: (i) We prove that Ha = H  iff  H.

Firstly, suppose that Ha = H                                                 ... (1)
Since H is a subgroup of G, so  H, where e is the identity element of H.
ea  Ha
 Ha
⇒  H                                                                          (From (1))
∴ Ha = H      ⇒  H.

Conversely: Suppose that  H.

We shall prove that  Ha = H.
Let x  Ha be an arbitrary element.
x = ha for some  H.
h, a  H
ha  H, since H is a subgroup of G.
⇒  H
∴  Ha
⇒  H
⇒ H⊆ H.                                                                               ... (2)
Now let  H.
Since a also belongs to H and H is a subgroup.
∴ xa-1  H
⇒ (xa-1) Ha
⇒ x(a-1a)  Ha
⇒ xe  Ha
⇒ x  Ha
∴  H
⇒ x  Ha
⇒ H ⊆ Ha.                                                                               ... (3)
From (2) and (3) we get Ha = H.

(ii)  Its proof is similar to (i).


Property II. (i)  Ha = Hb    iff  ab-1  H

                         (ii) aH = bH    iff  a-1 H

Proof: (i) We prove that Ha = Hb    iff ab-1  H.

Firstly, let  Ha = Hb.
Since H is a subgroup of G, so e  H.
∴ ea  Ha          i.e., a  Ha
⇒  Hb,          since       Ha = Hb
⇒ a = hb             for some     H
⇒ ab-1 = (hb)b-1 = h (bb)-1 = he = h  H
∴ ab-1  H.

Conversely: Let ab-1  H

We shall prove that Ha =Hb.
Since ab-1  H, so ab-1 = h for some h  H
⇒ (ab-1)b = hb
a(b-1b) = hb
⇒ ae = hb
⇒ a = hb
∴ Ha = H(hb)
           = (Hh)b
           = Hb,     since      H,   so Hh =H.

(ii) Its proof is similar to that of (i).


Property III. Any two right (or left) cosets are either disjoint or identical.


Proof: Let H be a subgroup of G.

Let Ha and Hb be two right cosets of H of G, so that a, b  G
We shall prove that either Ha =Hb        or          H Hb = 
If  H Hb = ∅, then we have nothing to prove.
So, let H H ∅.
In this case we shall prove that Ha =Hb.
Since H H ∅,       so  at least one ∈ H Hb
∴ ∈ Ha         and               ∈ Hb
x = h1a        for some     h∈ H        and
    x = h2a        for some     h∈ H
∴            h1a = h2b
⇒ h1-1 (h1a) = h1-1 (h2b)
⇒ (h1-1 h1)a = (h1-1 h2b)b
ea = h3b      where h3 = h1-1 h∈ H.
⇒ a = h3b
⇒ Ha = H(h3b)
           = (Hh3)b
           = Hb     since    h∈ H,    so   Hh= H
∴ Ha = Hb.
If      H H ∅, then  Ha = Hb.
So, either  H H= ∅  or Ha = Hb.

Property IV. The group G is equal to the union of all right cosets of H in G.


Proof: Let e, a, b, c, ... be all the elements of G.

∴ He = H, Ha, Hb, Hc, ... are all the right cosets of H in G.
We shall prove that G =  H H H ... 
Let ∈ G be any element.
∴ Hx is a right coset of H in G.
Since H is a subgroup of G, so ∈ G, where e is the identity element of G.
∴ ex  Hx                     i.e.,    Hx
⇒   H H H ...   H ... 
⊆  H H H ...                                           ... (1)

Conversely: Let Ha be any right coset of H in G, where ∈ G.

let  Ha.
∴ x = ha for some  H.
Since  H
∴  G
Also ∈ G.
h∈ G.
⇒ ∈ G
∴ ∈ Ha         ⇒ ∈ G
⇒ H⊆ G
∴ ∪ H⊆ G   a ∈ G
⇒  H H H ... ⊆ G                                          ... (2)
From (1) and (2), we get
 H H H ...  

Property V. There is one to one correspondence between any two right cosets of H in G.


Proof: Let Ha, Hb be two right cosets of H in G, where a, b ∈ G.

Define a map f : Ha → Hb     by
                       f (ha) = hb,    ha ∈ Ha.
f is one-one. Let x, y ∈ Ha such that f (x) = f (y)
since     x, y ∈ Ha
∴      x = h1a           and y = h2b    for some   h1, h∈ H.
∴  f (x) = f (y)
⇒ f (h1a) = f (h2b)
⇒ h1a = h2b
⇒ h1 = h2                         by right cancellation law in the group G.
⇒ h1a = h2a
x = y
⇒ f is one-one.
f is onto. Let y ∈ Hb
∴      y = hb     for some   ∈ H.
Take x = ha.
Since ∈ H,  so ha ∈ Ha
⇒ ∈ Ha,       where    x = ha ∈ Ha
∴ f (x) = f (ha) = hb = y
∴ f is onto.
∴ : Ha → His one-one and onto.
∴ Ha, Hb are in one-one correspondence.

Property VI. There is one-one correspondence between the set of left cosets of H in G and the set of right cosets of H in G.


Proof: Let L and M be respectively the set of left cosets and right c  osets of H and G.

L = {aH : ∈ G} and M = {Ha : ∈ G}.
Define a map  : L → M by
                        f (aH) = Ha-1 ,    ∀ ∈ G.
If ∈ G, then a-1 ∈ G and hence Ha-1 ∈ M.
f is a map from L to M.
We now prove that f is well defined.
Let a, b ∈ G such that aH = bH.
                                ⇔ a-1∈ H.
                                 Ha-1b = H.
                                 (Ha-1b)b-1  = Hb-1
                                 H(a-1b)b-1  = Hb-1
                                 Ha-1(bb-1) = Hb-1
                                 Ha-1e = Hb-1
                                 Ha-1 = Hb-1
                                           ⇔  f (aH) = f (bH)
f is well-defined.
The reverse steps shows that f is one-one.
We finally prove that f is onto.
Let Ha ∈ M be arbitrarily.
∈ G.
⇒ a-1∈ L. such that       f (a-1H) = H(a-1)-1 =Ha.
∴ f is onto.
The mapping : L → M is in one-one and onto.
⇒ The set of left cosets of H in G and the set of right cosets of H in G are in one-one correspondence.