Monday, 23 September 2013

Some Important Key Points



  • The measure of an angle is the amount of rotation from the initial side of the terminal side.
  • The sense of an angle is positive or negative according as the initial side rotates in anticlockwise or clockwise direction to get the terminal side.
  • There are three systems of measuring angles:
  •           (a) Sexagesimal system
              (b) Centesimal system
              (c) Circular system
  • In Sexagesimal system, we have
                  1 right angle = 90 degrees (90)
                  1 degree        = 60 minute (60')
                  1 minute        = 60 seconds (60")
  • In centesimal system, we have
                 1 right angle = 100 grades (100g)
                 1 grade          = 100 minutes (100')
                 1 minute        = 100 seconds (100")
  • In circular system, the unit of measurement is radian. One radian is the measure of an angle subtended at the centre of a circle by an arc of length equal to the radius of the circle
                      π radian = 180
  • The relation between three systems
                     D/90 degree = G/100 = 2R/π
  • Six trigonometric ratios
                     sin θ, cos θ, cosec θ, sec θ, tan θ, cot θ
  • 1 + tan2 θ = sec2 θ
       or  sec θ - tan θ = 1 / (sec θ + tan θ)
  • 1 + cot2 θ = cosec2 θ
       or cosec θ - cot θ = 1 / (cosec θ + cot θ)
  •                     sin (-θ) = - sin θ,
                       cos (-θ) = cos 
    θ,
                      tan (- θ) = tan 
    θ,
               sin (90∘ - θ) = cos 
    θ,
    and    cos
     (90∘ - θ) = sin θ,
               
    sin (90+ θ) = cos θ,
    and    cos
     (90+ θ) = - sin θ,
  • Sine and cosine functions and their reciprocals i.e., cosecant and secant functions are periodic functions with period 2π whereas tangent and cotangent functions are periodic with period π.
  • Odd functions: Sine, tangent, cotangent, cosecant.
  • Even functions: cosine, secant.
  • The curve y = tan x is a symmetric in opposite quadrants and  -∞ y < ∞  while the curve y = sec x is symmetric about y - axis and ≥ 1 or y ≤ -1. the value of y do not exist for
                   x = (2x + 1)
    π/2
  • For curve y = cosec x
    and           y = cot x, y do not exist for
                     x = n
    π
  • Formulae
                sin (A + B) = sin A cos B + cos A sin B
                 
    sin (A - B) = sin A cos B - cos A sin B
               co
    s (A + B) = cos A cos B - sin A sin B
                
    cos (A - B) = cos A cos B + sin A sin B
               tan (A + B) = (tan A + tan B)/ (1 - tan A tan B)
                
    tan (A - B) = (tan A - tan B)/ (1 + tan A tan B)
    if                  A + B = 
    π, then
                          sin A = sin B,
                          cos A = -cos B
    and               tan A = -tan B
    and if           A + B = 2
    π, then
                          sin A = -sin B,
                          cos A = cos B,
    and               tan A = -tan B
  • The equation a cos θ + b sin θ = c is soluable for
            |c
    ≤ √(a+ b2)
  • In any ΔABC, we have
                  a= bc- 2bc cos A
                  b
    c+ a- 2ca cos B
                  c
    a+ b- 2acos C
  • In any ΔABC, we have
                  a = b cos C + c cos B
                  b = c cos A + a cos C
                  c = a cos B + b cos A
  • The area Δ of a ΔABC is given by
                 
    Δ = (1/2) bc sin A
    or         
    Δ = (1/2) ca sin B
    or         Δ = (1/2) ab sin C
  • Let P(n) be a statement involving the natural number n such that -
    (i) P(1) is true and (ii) P(m + 1) is true, whenever P(m) is true then, P(n) is true for all ∈ N
    This is called first principle of mathematical inductions.
  • Let P(n) be a statement involving the natural number n such that -
    (i) P(1) is true and (ii) P(m + 1) is true, whenever P(n) is true for all ≤ m,  then, P(n) is true for all ∈ N
    This is called second principle of mathematical inductions.
  • Every polynomial equation f(x) = 0 of degree n has exactly n roots real or imaginary.
  • If ax2 + bx + c = 0, a ≠ 0 is a quadratic equation with real coefficients, then its roots α and β given by -
                           
    α = (-b + (b-4ac))/ (2a)
                           
    β = (-b - (b-4ac))/ (2a)
    or                   
    α = (-b + D)/ (2a)
                           
    β = (-b - D)/ (2a)
    where           D = 
    b-4ac
    (i) if              D = 0, then
                          
    α β = -b/2a
    so, equation has real and equal roots.
    (ii) If  D = +ve and a perfect square, then roots are rational and unequal (for a, b, c ∈ )
    for 
    a, b, c R, D = positive and perfect square, then roots are real and distinct.
    (iii) If D > 0, but not perfect square, then roots are irrational and unequal.
    (iv) If a = 1 and 
    b, c ∈ I, then roots are rational numbers, and roots must be integer.
  • n! = 1 × 2 × 3 × 4 . . . × (n - 1) × n
  • (2n)!/(n)! = 1.3.5 . . .  (2n - 1)2n
  • n! + 1 is not divisible by any natural number between 2 and n.

No comments:

Post a Comment