Tuesday, 10 December 2013

QUOTIENT GROUP

Quotient Group:
Let G be a group.
Let N be a normal subgroup.
Then the left coset space G/N is a group, where the group product is defined as:
         (aN)(bN) = (ab)N
G/N is called the quotient group of G by N.
It is proven to be a group in Quotient group is Group.
A quotient group is also known as a factor group.
In other words, We can say 
If H is a normal subgroup of a group G, then the group G/H of all the right cosets of H in G under the composition
         (Ha)(Hb) = Hab is called a quotient group or a factor group.

Note: If the composition in G/H is addition, then the composition in G/H is defined by
           (H + a) + (H + b) = H + (a + b).

Remark: If H is a normal subgroup of a finite group G, then G/H form a group of order O(G)/O(H).

Theorem: If H is a subgroup of an abelian group G, then the group G/H of all right cosets of H in G forms an abelian group under the composition defined by Ha.Hb = Hab.
Proof: If H is a subgroup of an abelian group G, then H is normal subgroup of G.
∴        G/H forms a quotient group.
Let Ha, H G/H      so that a,b  G.
(Ha)(Hb) = Hab = Hba,  since G is abelian.   ∴   ab = ba
                  = (Hb)(Ha).
Hence G/H is an abelian group.

Converse: The converse of the above result is not true that is, the quotient group may be abelian even if G may not be abelian.

Theorem: Every quotient group of a cyclic group is cyclic.
Proof: Let G = <a> be a cyclic group generated by a.
G is an abelian group.
Each subgroup of G is normal subgroup.
Let h be any subgroup of G.
H is a normal subgroup of G.
So G/H form a quotient group.
We prove that G/H is a cyclic group generated by Ha.
Let Hx  G/H be arbitrary element, where  G.
But G = <a>
x = afor some integer n.
Hx = Ha= H a . a ... a (n times)
                       = Ha. Ha ... Ha (n times) 
                       = (Ha)
Hx = (Ha)∀ Hx  G/H.
∴ G/H is a cyclic group generated by Ha.
So, each quotient group of a cyclic group is cyclic.

Converse: The converse of the above theorem may not be true.
i.e, quotient group may be cyclic even if the group may not be cyclic.

Example: If H be a normal subgroup of a group G and [G : H] = m, then show that for any x  G, xn  H.
Sol. Since H is a normal subgroup of group G such that 
[G : H] = m.
O(G/H) = m.
∴ ∀ x G/H,    where x  G, we have
      (xH)= H    [If O(G) = n then a= e, a  G]
      xmH = H
⇒  x H.
Thus ∀  G,   we have  x H.

Sunday, 8 December 2013

THEOREMS ON NORMAL SUBGROUP

Theorem: A subgroup H of a group G is a normal subgroup of G iff ghg-1 ∈ H for every h ∈ H, g ∈ G.
Proof: Firstly, let H be a normal subgroup of G.
∴               gH = Hg,      ∈ G
Let ∈ H and g ∈ G be any element. Then
                  g∈ gH = Hg
⇒              g∈ Hg
⇒              gh = h1g  for some h∈ H
⇒              ghg-1 h∈ H
⇒              ghg-1 ∈ H

Conversely: Let H be a subgroup of G, such that
                  ghg-1 ∈ H,      ∀ ∈ H, g ∈ G.
We show that H is a normal subgroup
i.e.,            aH = Ha,        a ∈ G.
Let a ∈ G be any element. Then by given hypothesis
                  aha-1 ∈ H,      ∀ ∈ H
Let ah  aH be any element. Then
                  ah = (aha-1)∈ Ha
⇒              ah  Ha
∴              a⊆ Ha.                                                                 ... (1)
Again, Let b = a-1 be any element of G.
Then by given hypothesis bhb-1 ∈ H.
But            bhb-1 a-1h(a-1)-1 = a-1h∈ H.
Let ha ∈ Ha be any element. Then
                  ha = (aa-1)ha = a (a-1ha) aH
⇒              ha ∈ aH
∴              Ha aH.                                                                ... (2)
From (1) & (2) we get
                  aH = Ha,       a ∈ G.
Hence, H is a normal subgroup of G.

Theorem: Let H be a subgroup of G. Then the following statements are equivalent
      (i) ghg-1 ∈ H,           ∀ h ∈ H, g ∈ G.
     (ii) ghg-1 = H,            g ∈ G.
    (iii) gH = Hg,              g ∈ G.

Proof: (i) (ii) Since ghg-1 ∈ H,      ∀ ∈ H, g ∈ G.
Let ghg-1 h1   for some h∈ H
⇒       ghg-1 = H,            g ∈ G.

(ii) ⇒ (iii) Let ghg-1 = H,            g ∈ G.
⇒       (ghg-1)g = Hg
⇒       gH(gg-1) = Hg
⇒               gHe = Hg
⇒                 gH = Hg.                                                   (He = H)

(iii) ⇒ (i) Let  gH = Hg,        g ∈ G.
⇒         gh = h1g   for some h,h∈ H
⇒         ghg-1 h1 ∈ H
⇒         ghg-1 ∈ H,    ∀ ∈ H, g ∈ G.
Hence (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Hence the given statements are equivalent.


Theorem: The centre Z(G) of a group G is a normal subgroup of G.
Proof: We know Z(G) = {∈ G ; xg = gx    x ∈ G}.
Clearly          Z(G) ⊆ G.
Since     ex = xe,     x ∈ G∈ Z(G).
∴  Z(G) is a non-empty subset of G.
Let a, b ∈ Z(G) be any two elements, then
              ax = xa,  x ∈ G            and 
              bx = xb,  x ∈ G 
⇒          xb-1 b-1x
Now      x(ab-1) = (xa)b-1 = (ax)b-1
                                 = a(xb-1) = a(b-1x)
                           = (ab-1)x
⇒          x(ab-1) = (ab-1)x       x ∈ G.
∴          ab-1 ∈ Z(G)      a, b ∈ Z(G).
So, Z(G) is a subgroup of G.
Now, we show that Z(G) is a normal subgroup of G.
Let     ∈ Z(G)        and     ∈ G , then
              ghg-1 = (gh)g-1 = (hg)g-1 = h(gg-1)
                        = he = h ∈ Z(G)
∴           ghg-1 ∈ Z(G),           g ∈ G,  ∈ Z(G)
Hence, Z(G) is a normal subgroup of G.

NORMAL SUBGROUPS (OR INVARIANT SUBGROUPS OR SELF CONJUGATE SUBGROUPS)

A subgroup H of a group G is called a normal subgroup of G if every left coset of H in G is equal to the corresponding right coset of H in G.
i.e.,           aH = Ha,       ∈ G.

If the composition defined on G be addition, then H will be a normal subgroup of G iff.
                a + H = H + a,        ∀ ∈ G.

In general, if H is a subgroup of a group G, then the left coset aH of H in G may not be equal to the corresponding right coset Ha. In this section, our aim is to study a particular class of subgroups H for which each left coset of H in G is equal to the corresponding right coset of H in G. We call such subgroups as normal subgroups.

Remark: (i) When G is an abelian group. Then every subgroup H of G is a normal subgroup, for 
                           aH = Ha,        ∀ ∈ G.
(ii) The subgroups {e} and G of any group G are always normal subgroups of G. These are called trivial normal subgroups.
(iii) If H is a normal subgroup of G, then we write it as 
Δ G.

Properties:

  • Normality is preserved upon surjective homomorphism, and is also preserved upon taking inverse images.
  • Normality is preserved on taking direct products.
  • Every subgroup of index 2 is normal.
  • A normal subgroup of a central factor is normal. In particular, a normal subgroup of direct factor is normal.
                                  Examples

Example: Let G = S3, the symmetric group on three numbers 1, 2, 3.Show that the subgroup 
                           H = {i, (123), (132)}
is a normal subgroup of G but the subgroup
                           K = {i, (12)}
is not a normal subgroup of G.
Sol.
We know that Ha = H = aH   if ∈ H.
Since i, (123), (132) ∈ H
iH = Hi, (123)H = H(123), (132)H = H(132).
Now       (12)H = {(12)i, (12)(123),(12)(132)}
                          = {(12)(23)(13)} .
and        H(12) = {i(12), (123)(12), (132)(12)}
                          = {(12)(13)(23)}.
∴           (12)H = H(12).
Again    (23)H = {(23)i, (23)(123),(23)(132)}
                          = {(23)(13)(12)} .
and        H(23) = {i(23), (123)(23), (132)(23)}
                          = {(23)(12)(13)}.
∴           (23)H = H(23).
Also       (13)H = {(13)i, (13)(123),(13)(132)}
                          = {(13)(23)(12)} .
and        H(13) = {i(13), (123)(13), (132)(13)}
                          = {(13)(12)(23)}.
∴           (13)H = H(13).
Thus      xH = Hx,       ∀ ∈ S3.
∴  H is a normal subgroup of S3.
But        (13)K = {(13)i, (13)(12)}
                         = {(13)(132)}
and        K(13) = {i(13), (12)(13)}
                         = {(13)(123)}
Clearly   (13)K  K(13).
Hence K is not a normal subgroup of G.

Example: If H is a subgroup of G of index 2 in G. Then H is normal subgroup of G.
Sol. Let H be a subgroup of G such that [G : H] = 2.
∴  The number of distinct left (or right) cosets of H in G is 2.
To show that H is a normal subgroup of G.
It is sufficient to prove that xH = Hx,    ∀ ∈ G.
Let ∈ G be arbitrary element of G.

Case I. When  ∈ H.
Since ∈ H           So,    xH = H = Hx
Hence  xH = Hx.

Case II. When  H.
∴          x H         and   Hx ≠ H.
Also     [G : H] = 2.
∴         H xH = G = H ∪ Hx
⇒         xH = Hx.
Combining the two cases, we find that
            xH = Hx      ∀ ∈ G.
∴   H is a normal subgroup of G.

SOME IMPORTANT THEOREMS ON CYCLIC GROUP

Theorem: Let G be a finite group of order n. If G contains an element of order n, then G must be cyclic.
Proof: Let ∈ G such that O(a) = n.
Let H = {a: r ∈ 1 } be a subgroup of G.
But O(a) = n
⇒ H = {e, a, a2, ... , an-1} = <a>
i.e., H is a cyclic subgroup of G generated by a.
Also O(H) = O(G)
⇒ G = H = <a>.
i.e., G is a cyclic group.

Theorem: Every cyclic group is abelian.
Proof: Consider a cyclic group G  generated by a.
i.e.,  G = <a>.
Let x, y ∈ G be arbitrary element.
x = aand y = afor some integers n and m.
Then xy = anaan+m =am+n ama= yx.
G is an abelian group.

Theorem: Prove that a subgroup of a cyclic group is cyclic.
Proof: Let G = <a> be a cyclic group generated by a.
Let H be a subgroup of G.
If H = G, then H = <a> is a cyclic group generated by a.
If H = {e}, then H = <e> is a cyclic group generated by e.
So, let H ≠ G, {e} i.e.,  h is a proper subgroup of G.
 ∃ an element ∈ H such that ≠ e.
Now ∈ H
⇒ ∈ G.
x = afor some non-zero integer r
∴ ∈ H
x-1 ∈ H, since H is a subgroup of G.
⇒ a-r ∈ H
∴ aa-r ∈ H.
Since r
 ≠ 0, therefore atleast one of r, -r is a positive integer.
So, positive integral powers of a belong  to H.
Let q be the least positive integer such that a∈ H.
We shall prove that H is a cyclic group generated by aq.
Let ∈ H be arbitrary element
⇒ ∈ G                                                                           [⊆ G]
⇒ x = an  for some integer n.                                                 ... (1)
By division algorithm, ∃ integers s and r such that
           n = sq + r     where 0 ≤ ≤ q
⇒      aasq + r
⇒      aasq ar
⇒     an- sq = a.                                                                       ... (2)
Since a∈ H and s is an integer, so asq∈ H.
Also a∈ H
∴ a(asq)-1 ∈ H
⇒ aa- sq ∈ H
⇒ an-sq ∈ H
⇒ a∈ H,                                                                           From (2)
∴ a∈ H    ≤ ≤ q-1.                                                           ... (3)
But q is the least positive integer such that a∈ H.
 r = 0,                                                              [From (2) and (3)]
From (1), (2) and (3) we get
     x = aasq + r asq + 0 (aq)s
This is true for all ∈ H.
Each element of H is an integral power of aq.
So, H is cyclic group generated by aq.
Hence subgroup of a cyclic group is cyclic.

Theorem: Every group of prime order is cyclic.
Proof: Let G be a group of order p, a positive prime.
Since ≥ 2
G has atleast two elements.
Consider  e ∈ G and let H = <a> be the cyclic subgroup of G.
Therefore O(H) = O(a) > 1.
By Lagrange's theorem O(H) | O(G)
i.e.,  O(H) | p.
But p is prime.
Therefore O(H) = p = O(G).
Hence G must be cyclic group.