Sunday, 8 December 2013

SOME IMPORTANT THEOREMS ON CYCLIC GROUP

Theorem: Let G be a finite group of order n. If G contains an element of order n, then G must be cyclic.
Proof: Let ∈ G such that O(a) = n.
Let H = {a: r ∈ 1 } be a subgroup of G.
But O(a) = n
⇒ H = {e, a, a2, ... , an-1} = <a>
i.e., H is a cyclic subgroup of G generated by a.
Also O(H) = O(G)
⇒ G = H = <a>.
i.e., G is a cyclic group.

Theorem: Every cyclic group is abelian.
Proof: Consider a cyclic group G  generated by a.
i.e.,  G = <a>.
Let x, y ∈ G be arbitrary element.
x = aand y = afor some integers n and m.
Then xy = anaan+m =am+n ama= yx.
G is an abelian group.

Theorem: Prove that a subgroup of a cyclic group is cyclic.
Proof: Let G = <a> be a cyclic group generated by a.
Let H be a subgroup of G.
If H = G, then H = <a> is a cyclic group generated by a.
If H = {e}, then H = <e> is a cyclic group generated by e.
So, let H ≠ G, {e} i.e.,  h is a proper subgroup of G.
 ∃ an element ∈ H such that ≠ e.
Now ∈ H
⇒ ∈ G.
x = afor some non-zero integer r
∴ ∈ H
x-1 ∈ H, since H is a subgroup of G.
⇒ a-r ∈ H
∴ aa-r ∈ H.
Since r
 ≠ 0, therefore atleast one of r, -r is a positive integer.
So, positive integral powers of a belong  to H.
Let q be the least positive integer such that a∈ H.
We shall prove that H is a cyclic group generated by aq.
Let ∈ H be arbitrary element
⇒ ∈ G                                                                           [⊆ G]
⇒ x = an  for some integer n.                                                 ... (1)
By division algorithm, ∃ integers s and r such that
           n = sq + r     where 0 ≤ ≤ q
⇒      aasq + r
⇒      aasq ar
⇒     an- sq = a.                                                                       ... (2)
Since a∈ H and s is an integer, so asq∈ H.
Also a∈ H
∴ a(asq)-1 ∈ H
⇒ aa- sq ∈ H
⇒ an-sq ∈ H
⇒ a∈ H,                                                                           From (2)
∴ a∈ H    ≤ ≤ q-1.                                                           ... (3)
But q is the least positive integer such that a∈ H.
 r = 0,                                                              [From (2) and (3)]
From (1), (2) and (3) we get
     x = aasq + r asq + 0 (aq)s
This is true for all ∈ H.
Each element of H is an integral power of aq.
So, H is cyclic group generated by aq.
Hence subgroup of a cyclic group is cyclic.

Theorem: Every group of prime order is cyclic.
Proof: Let G be a group of order p, a positive prime.
Since ≥ 2
G has atleast two elements.
Consider  e ∈ G and let H = <a> be the cyclic subgroup of G.
Therefore O(H) = O(a) > 1.
By Lagrange's theorem O(H) | O(G)
i.e.,  O(H) | p.
But p is prime.
Therefore O(H) = p = O(G).
Hence G must be cyclic group.

No comments:

Post a Comment