Theorem: A subgroup H of a group G is a normal subgroup of G iff ghg-1 ∈ H for every h ∈ H, g ∈ G.
Proof: Firstly, let H be a normal subgroup of G.
∴ gH = Hg, ∀ g ∈ G
Let h ∈ H and g ∈ G be any element. Then
gh ∈ gH = Hg
⇒ gh ∈ Hg
⇒ gh = h1g for some h1 ∈ H
⇒ ghg-1 = h1 ∈ H
⇒ ghg-1 ∈ H
Conversely: Let H be a subgroup of G, such that
ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
We show that H is a normal subgroup
i.e., aH = Ha, ∀ a ∈ G.
Let a ∈ G be any element. Then by given hypothesis
aha-1 ∈ H, ∀ h ∈ H
Let ah ∈ aH be any element. Then
ah = (aha-1)a ∈ Ha
⇒ ah ∈ Ha
∴ aH ⊆ Ha. ... (1)
Again, Let b = a-1 be any element of G.
Then by given hypothesis bhb-1 ∈ H.
But bhb-1 = a-1h(a-1)-1 = a-1ha ∈ H.
Let ha ∈ Ha be any element. Then
ha = (aa-1)ha = a (a-1ha) ∈ aH
⇒ ha ∈ aH
∴ Ha ⊆ aH. ... (2)
From (1) & (2) we get
aH = Ha, ∀ a ∈ G.
Hence, H is a normal subgroup of G.
Theorem: Let H be a subgroup of G. Then the following statements are equivalent
(i) ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
(ii) ghg-1 = H, ∀ g ∈ G.
(iii) gH = Hg, ∀ g ∈ G.
Proof: (i) ⇒(ii) Since ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
Let ghg-1 = h1 for some h1 ∈ H
⇒ ghg-1 = H, ∀ g ∈ G.
(ii) ⇒ (iii) Let ghg-1 = H, ∀ g ∈ G.
⇒ (ghg-1)g = Hg
⇒ gH(gg-1) = Hg
⇒ gHe = Hg
⇒ gH = Hg. (∵ He = H)
(iii) ⇒ (i) Let gH = Hg, ∀ g ∈ G.
⇒ gh = h1g for some h,h1 ∈ H
⇒ ghg-1 = h1 ∈ H
⇒ ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
Hence (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Hence the given statements are equivalent.
Theorem: The centre Z(G) of a group G is a normal subgroup of G.
Proof: We know Z(G) = {g ∈ G ; xg = gx ∀ x ∈ G}.
Clearly Z(G) ⊆ G.
Since ex = xe, ∀ x ∈ G⇒ e ∈ Z(G).
∴ Z(G) is a non-empty subset of G.
Let a, b ∈ Z(G) be any two elements, then
ax = xa, ∀ x ∈ G and
bx = xb, ∀ x ∈ G
⇒ xb-1 = b-1x
Now x(ab-1) = (xa)b-1 = (ax)b-1
= a(xb-1) = a(b-1x)
= (ab-1)x
⇒ x(ab-1) = (ab-1)x ∀ x ∈ G.
∴ ab-1 ∈ Z(G) ∀ a, b ∈ Z(G).
So, Z(G) is a subgroup of G.
Now, we show that Z(G) is a normal subgroup of G.
Let h ∈ Z(G) and g ∈ G , then
ghg-1 = (gh)g-1 = (hg)g-1 = h(gg-1)
= he = h ∈ Z(G)
∴ ghg-1 ∈ Z(G), ∀ g ∈ G, h ∈ Z(G)
Hence, Z(G) is a normal subgroup of G.
Proof: Firstly, let H be a normal subgroup of G.
∴ gH = Hg, ∀ g ∈ G
Let h ∈ H and g ∈ G be any element. Then
gh ∈ gH = Hg
⇒ gh ∈ Hg
⇒ gh = h1g for some h1 ∈ H
⇒ ghg-1 = h1 ∈ H
⇒ ghg-1 ∈ H
Conversely: Let H be a subgroup of G, such that
ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
We show that H is a normal subgroup
i.e., aH = Ha, ∀ a ∈ G.
Let a ∈ G be any element. Then by given hypothesis
aha-1 ∈ H, ∀ h ∈ H
Let ah ∈ aH be any element. Then
ah = (aha-1)a ∈ Ha
⇒ ah ∈ Ha
∴ aH ⊆ Ha. ... (1)
Again, Let b = a-1 be any element of G.
Then by given hypothesis bhb-1 ∈ H.
But bhb-1 = a-1h(a-1)-1 = a-1ha ∈ H.
Let ha ∈ Ha be any element. Then
ha = (aa-1)ha = a (a-1ha) ∈ aH
⇒ ha ∈ aH
∴ Ha ⊆ aH. ... (2)
From (1) & (2) we get
aH = Ha, ∀ a ∈ G.
Hence, H is a normal subgroup of G.
Theorem: Let H be a subgroup of G. Then the following statements are equivalent
(i) ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
(ii) ghg-1 = H, ∀ g ∈ G.
(iii) gH = Hg, ∀ g ∈ G.
Proof: (i) ⇒(ii) Since ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
Let ghg-1 = h1 for some h1 ∈ H
⇒ ghg-1 = H, ∀ g ∈ G.
(ii) ⇒ (iii) Let ghg-1 = H, ∀ g ∈ G.
⇒ (ghg-1)g = Hg
⇒ gH(gg-1) = Hg
⇒ gHe = Hg
⇒ gH = Hg. (∵ He = H)
(iii) ⇒ (i) Let gH = Hg, ∀ g ∈ G.
⇒ gh = h1g for some h,h1 ∈ H
⇒ ghg-1 = h1 ∈ H
⇒ ghg-1 ∈ H, ∀ h ∈ H, g ∈ G.
Hence (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Hence the given statements are equivalent.
Theorem: The centre Z(G) of a group G is a normal subgroup of G.
Proof: We know Z(G) = {g ∈ G ; xg = gx ∀ x ∈ G}.
Clearly Z(G) ⊆ G.
Since ex = xe, ∀ x ∈ G⇒ e ∈ Z(G).
∴ Z(G) is a non-empty subset of G.
Let a, b ∈ Z(G) be any two elements, then
ax = xa, ∀ x ∈ G and
bx = xb, ∀ x ∈ G
⇒ xb-1 = b-1x
Now x(ab-1) = (xa)b-1 = (ax)b-1
= a(xb-1) = a(b-1x)
= (ab-1)x
⇒ x(ab-1) = (ab-1)x ∀ x ∈ G.
∴ ab-1 ∈ Z(G) ∀ a, b ∈ Z(G).
So, Z(G) is a subgroup of G.
Now, we show that Z(G) is a normal subgroup of G.
Let h ∈ Z(G) and g ∈ G , then
ghg-1 = (gh)g-1 = (hg)g-1 = h(gg-1)
= he = h ∈ Z(G)
∴ ghg-1 ∈ Z(G), ∀ g ∈ G, h ∈ Z(G)
Hence, Z(G) is a normal subgroup of G.
No comments:
Post a Comment