Wednesday, 9 October 2013

Complex Numbers

A complex number z is an ordered pair (x, y) of real numbers and y.
                                        ≡ (x, yx + iy
Re z = x (Real part), Im z = y (imaginary part) and i= -1 i.e.,  i = -1 (imaginary unit)
          (a)  x + iy = a + ib  x = a and y = b
          (b) For z = x + iy,
           if x = 0 then z = iy (pure imaginary)
           if y = 0 theb z = x (pure real)

Addition of complex numbers:

          Let z= x1 + iyand zx2 + iy2,  then
                      zz= (xx2) + i(y1 + y2)

Multiplication of complex numbers:

         z1z= (x1xy1y2) + i(x1y2 + x2y1)

Subtraction of complex numbers:

        z-  z= (xx2) + i(y1 - y2)

Division of complex numbers:

         z = z1/zx + iy, where x = (x1xy1y2)/ (x22  + y22)
                                                y = (x1y2 + x2y1)/(x22  + y22z≠ 0

Pactical rule:

      z = z1/z= (x1 + iy1)/(x2 + iy2)
                     = [(x1 + iy1)/(x2 - iy2)] × [(x2 + iy2)/(x2 + iy2)]
                     = x + iy.

Polar Form of Complex Numbers: 
Let (x, y) be the co-ordinate in cartesian co-ordinate system and (r, θ) be the co-ordinates in polar co-ordinates, then
                x = r cosθ, y = r sinθ
          so, z = x + iy =  r(cosθ + i sinθ)
Here r = |z| = √(x+ y2) = z  (absolute value/modulus of z)
         θ = arg z =tan-1 y/x (argument of z)

Triangular inequality: |z+ z2 |z1| + |z2|

Generalized triangle inequality: |z+ z2 + ... + zn≤ |z1| + |z2| + ... + |zn|.


                                     Numbers

Counting Numbers (Natural numbers): 1, 2, 3, 4, ...

Even numbers: Divisible by 2.


Old numbers: Not divisible by 2.


Prime numbers: Number greater than one and whose only divisors are one and number itself. i.e., 2, 3, 5, 7, 11, 13, ...


Composite numbers: 4, 6, 8, 9, 10, 12, ...


          Fundamental Theorems of Arithmetic:

Principle of induction: If ℤ is a set of integers such that
        (a) 1 ∈ 
        (b) n ∈ ℤ ⇒ n + ∈ ℤ 
        (c) All integers ≥ ∈ 

Well ordering principle: If A is a non-empty set of positive integers, then A contains a smallest member.


Divisibility: d/n (d divides n⇒ n = cd, for some c.


Common divisor: If d/a and d/b then is common divisor of and b.


Greatest common divisor: If d/a and d/b and for every e/a and e/b  e/d then is greatest common divisor of a and b, denoted by (a, b) = d.


Relative Prime: and are relative prime if (a, b) = 1.


Prime number: An integer n is prime if n>1 and if the only positive divisors of are 1 and n.


Composite number: If n>1 and is not prime, then n is composite number.

No comments:

Post a Comment