Saturday 5 October 2013

Lebesgue Measurable Functionsn and Integration

Lebesgue Measurable Function- An extended real valued  function f is Lebesgue measurable if its domain is measurable and if it satisfies one of the following five; for each real number α,
    (a) {x : f(x) < α} is measurable
          (b) {x : f(x) > α} is measurable
          (c) {x : f(x)  α} is measurable
          (d) {x : f(x)  α} is measurable
          (e) {x : f(x) = α} is measurable.

Almost everywhere property- If a set of points where it fails to hold is a set of measure zero.

   If f = g, almost everywhere if f and g have the same domain and m{x : f(x)  g(x)} = 0.

Simple Function- A real valued function is simple function, if it is lebesgue measurable and assume only a finite number of values.


Borel measurability- A function  f is Borel measurable if for each α, the set  {x : f(x) > α} is Borel set.


Some Important Results:

  • If f is an extended real valued function whose domain is measurable. Then the following statements are equivalent : For each real number α,


  1. The set {x : f(x) > α} is Lebesgue measurable.
  2. The set {x : f(x) < α} is Lebesgue measurable.
  3. The set {x : f(x)  α} is Lebesgue measurable.
  4. The set {x : f(x)  α} is Lebesgue measurable.
  • If c is a constant and f and g two Lebesgue measurable real valued functions defined on the same domain. Then the function f + c, cf, f + g, g - f and fg are also Lebesgue measurable.
  • If f is a measurable function and f = g almost everywhere, then g is measurable.

                             Lebesgue Integration

The Riemann Integral: If f is a bounded real valued function defined on the interval [a, b] and
a = xx< . . . < x= b is a sub-division of [a, b].
                   S = Σ(xxi-1)M,               i = 1, 2, . . . , n
                   s = Σ(xxi-1)mi ,                i = 1, 2, . . . , n
where     Mi = sup f(x)   
and         mi = inf f(x).

Step Function- For the given subdivision
a = xx< . . . < x= b of the interval [a, b], a function Φ is a step function if
                      Φ(x) = c,       xi -1 x < xi .

The Lebesgue Integral of a Bounded Function Over a Set of Finite Measure:


  • canonical representation of simple function- If Φ is a simple function and {a, . . . ,an} is the set of non-zero values of Φ, then,
                  Φ = Σ ai χAi  ,      where A= {x : Φ(x) = ai} is called canonical representation of simple function. Here Aare disjoint and aare distinct and non-zero.


  • integral of simple function: If simple function Φ vanishes outside a set of finite measure, the integral of Φ is

              Φ(x)dx = Σ ai(mAi)
when Φ has a canonical representation Φ = Σ ai χAi  and mAis the Lebesgue measure of Ai.
If E is any measurable set, we have
EΦ = Φ · χE


  • The Lebesgue integral: If f is a bounded measurable function defined on a measurable set E with mE finite, the Lebesgue integral of f over E is

       f(x)dx = inf ψ . (x)dx for all simple function ψ ≥ f.

The Integral of a Non-negative Function: If f is a non-negative measurable function defined on a measurable set E, then integral of non-negative measurable function f is
                   f = sup h   for all ≤ f
where h is a bounded measurable function such that
m{x : h(x) ≠ 0} < 
∞.

  • Integrable function: A non-negative measurable function f is integrable over the measurable set E, if
                  f < ∞.

The General Lebesgue Integral:
  • The positive and negative part of function:
            
    +(x) = max {f(x), 0}
           
     -(x) = max {-f(x), 0}
    and        f = -
               |
    f| = +-
    If f is measurable function then f is integrable over E if +and are both integrable over E, and
      
    f(x)dx = +(x)dx + -(x)dx
Convergence in Measure:
  • Convergence in measure: A sequence <fn> of measurable function is said to converge to f in measure if, given ε > 0, there is an N such that for all n ≥ N. we have
         m {x : |f(x) - fn(x)| ≥ ε} < 
    ε.
  • cauchy sequence in measure: A sequence <fn> of measurable function is Cauchy sequence in measure if given ε > 0, there is an N such that for all m, n ≥ N.
    we have
         {x : |fn(x) - fm(x)| ≥ ε} < 
    ε.

No comments:

Post a Comment