Sunday, 20 October 2013

Inverse of a subset of a group

Let H be a subset of a group G, then the inverse of H is 
H-1 and is defined as 
                        H-1 = {h-1 : for all ∈ H}.

Theorem: If H be a subgroup of a group G, 

then H-1 = H.

Proof: Let h-1 ∈ H-1 be any element, where h ∈ H.

Since H is a subgroup of G.
∴ h-1 ∈ H
Thus h-1 ∈ H-1 ⇒ h-1 ∈ H
∴ H-1 ⊆ H.                                                                                ... (1)

Conversely: Let h ∈ H be any element of H

Since H is a subgoup of G
∴ h-1 ∈ H
⇒ (h-1)-1 ∈ H-1           i.e.,   h  H-1 
Thus h ∈ H    ⇒  h  H-1 
⊆ H-1                                                                                                ... (2)
From (1) and (2) we get
H = H-1

Remark: The converse of the above theorem need not be true.
i.e., If H is a subset of a group G such that H-= H, then H need not be a subgroup of G.

For example: (i)  let G be the group of square roots of unity, i.e., G = {-1, 1} under multiplication, let H = {-1} be a subset of G.
Here H-= {-1} = H, for (-1)-= -1.
But H is not a subgroup of G.

(ii) let H = {12, (23)} be a subset of a group S3.
Here H-{12, (23)} = H                      ((12)(12) = i, (23) = i)
But H is not a subgroup of S3.             (as(12)(23) = (312) ∉ H)

(iii) Let G = {(0, 1, 2, 3, 4, 5), +6} be a group under addition modulo 6.
Let H = {1, 3, 5} be a subset of G.
Then H-= {1, 3, 5} = H, for
(1)-= 5, (3)-= 3, (5)-= 1, but H is not a subgroup of G as 
+5 = 2 ∉ H.

Theorem: A non-empty subset of H of a group G is a subgroup then HH = H.
Proof:
Let 
h1h∈ HH be any element, where h1, h∈ H
Since H is a subgroup of G
⇒ h1h∈ H
Thus, ∀ h1h∈ HH
⇒ h1h∈ H
∴ HH ⊆ H.                                                                               ... (1)

Conversely: Let h ∈ H be any element of H.
Now h = he ∈ HH                                                           (∵ ∈ H)
Thus h ∈ H 
⇒ h ∈ HH
∴ ⊆ HH                                                                                ... (2)
from (1) and (2), we get,
 HH = H.

Theorem: If H and K be any two subsets of a group G, then
         (HK)-= K-1H-1 .
Proof: Let (hk)-1 be any element of (HK)-1
where h ∈ H, k ∈ K
∴ (hk)-= k-1h-∈ K-1H-1                  [∵ h-∈ H-and k-∈ K-1 ]
Thus (hk)-1 ∈ (HK)-1
(hk)-1 ∈ K-1H-1
(HK)-⊆ K-1H-1                                                                                  ... (1)

Conversely: Let k-1h-∈ K-1H-be any element, 
where k ∈ K, h ∈ H.
∴ k-1h-(hk)-(HK)-1
Thus k-1h-∈ K-1H-1
k-1h-∈ (HK)-1
∴ K-1H-⊆ (HK)-1                                                                         ... (2)
From (1) and (2), we get,
   (HK)-1 = K-1H-1
                                                                                  Hence Proved.

Theorem: If H and K are two subgroups of a group G, then HK is a subgroup of G if and only if HK = KH.
Proof: Firstly, let HK = KH.
To show that HK is a subgroup of G.
It is sufficient to show that (HK)(HK)-= (HK)
we have (HK)(HK)-= (K-1H-1) = H(KK-1)H-1
                                     = (HK)H-1                    
                                          [K is a subgroup of G.   ∴ KK-= K]
                                     = (KH)H-1                 [HK = KH given]
                                     = K (HH-1)
                                     = KH
                                        
[∵ H is a subgroup of G.   HH-= H]
                                    = HK.
Thus HK is a subgroup of G.

Conversely: Suppose HK is a subgroup of G.
To show HK = KH.
Now (HK)-HK.     [if H is a subgroup of G then H-= H]
⇒ K-1H-= HK.
⇒ KH = HK.

1 comment: