Saturday, 5 October 2013

Lebesgue Measure

Measure:
  • Length of an interval: The length of an interval I is the difference of end points of the interval.
  • Measure of a set: Let M    be a collection of sets of real numbers and E ∈ M   . Then non-negative extended real number mE is called the measure of E. if m satisfies:
        (a) mE is defined for each set E of real numbers. i.e.,
              M   =
    P(R), the power set of sets of real number.
        (b) For an interval I, mI = l(I).
        (c) If <En> is a sequence of disjoint sets
              (for which m is defined) in M   .
                 m(En) = ΣmEn.
       
    (d) m is translation invariant, i.e.,  if E is the set on which m is defined, and
                     E + y = {x + y : ∈ E} then m(E + y) = mE.
  • Countable additive measure: let M   be a σ-algebra of sets of real numbers and ∈ M   . Then non-negative extended real number mE is countable additive measure, if m(En) = ΣmEn  for each sequence <En> of disjoint sets in M   .
  • Countable sub-additive measure:  let M   be a σ-algebra of sets of real numbers and ∈ M   . Then non-negative extended real number mE is countable sub-additive measure, if m(En)  ΣmEn  for each sequence <En> of disjoint sets in M   .
Lebesgue Outer Measure: Let A be a set of real numbers, {In} be the countable collection of open intervals that covers A, i.e., ⊂ ∪In. Then Lebesgue outer measure m*A of A is
           m*A = Inf Σl(In)  where ⊂ ∪In

  • Some Important Results:
    (1) 
    m*= 0.
    (2) A ⊂ B 
    ⇒ m*≤ m*B.
    (3) For singleton set {x}, 
    m*{x} = 0.
    (4) The Lebesgue outer measure of an interval is its length.
    (5) If {An} is a countable collection of sets of real number. Then 
    m*(∪An≤ m*An
    (6) If A is countable then 
    m*A = 0.
    (7) The set [0, 1] is not countable.

Lebesgue Measurable Sets and Lebesguue Measure:


  • Lebesgue measurable sets- A set E is Lebesgue measurable if for each set A we have m* A = m* (AE) + m* (AEc).
  • Lebesgue measure- If E is a Lebesgue measurable set, the Lebesgue measure mE is the Lebesgue outer measure of E.
  • Some important Results:
    (1)
    If  
    m*E = 0, then E is Lebesgue measurable.
    (2) If Eand Eare Lebesgue measurable, so 
    E∪ E2.
    (3) The family M   of Lebesgue measurable sets is an algebra of sets.
    (4) The collection M   of Lebesgue measurable sets is a 
    σ-algebra.
    (5) Every set with Lebesgue outer measure zero is Lebesgue measurable.
    (6) The interval (a, ) is Lebesgue measurable.
    (7) Every Boral set is Lebesgue measurable.
    (8) Each open set and closed set is Lebesgue measurable.
    (9) If 
    <Ei> is a sequence of Lebesgue measurable set. Then for Lebesgue measure m(Ei)  ΣmEi
    If the sets Eare pairwise disjoint the for Lebesgue measure m(Ei) = ΣmEi
    (10) Let 
    <En> be an infinite decreasing sequence of Lebesgue measurable sets, i.e., En+1 ⊂ Efor each n. Let Lebesgue measure mE, is finite. Then
                             m(Ei) = lim  mEfor all n = 1, . . . , 
    ∞.
Littlewood's Three Principles:
(a) Every (measurable) set is nearly a finite union of intervals.
(b) Every (measurable) set is nearly continuous.
(c) Every convergent sequence of (measurable) function is nearly uniform convergent.

Jacobian Determinant:
If = (f, f2 , … , fn) and x= (x, x2 , … , xn) the Jacobian matrix is Df (x) = [Difi(x)] on × n matrix, and Jacobian determinant is
                Jf(x) = det. Df (x) = det [Difi(x)].

No comments:

Post a Comment