Sunday, 20 October 2013

Criterion for a subset to be a subgroup of a group

Lemma I. A non-empty suset H of a group G is a subgroup iff
                     (i) ab  H,      ∀ a, b  H
                    (iia-1  H,      ∀  H.

Proof: Necessary part: Suppose that a non-empty subset H of a group G is its subgroup.

Therefore H itself forms a group.
               The conditions (i) and (ii) hold in H, by the definition of a group.

Sufficient Part: Suppose that H is a non-empty subset of a group G such that the conditions (i) and (ii) hold in H.

               ∴ The closure property and the existence of inverse holds in H.
               Now, let a, b, c  H
               ∴ a, b, c  G                                                    [ ⊆ G]
                (ab)c = a(bc)      Since G is a group.
               So, the associative law holds in H.
               Since H is a non-empty subset of G, so ∃   H.
               By (ii), a-1  H
               a, a-1  H
               ∴ a-1  H, from (i)
                H, where e is identity element of G.
               ⇒ The identity element exists in H.
                    Therefore, H itself is a group.
               Thus H is a subgroup of G.

Lemma II: A non-empty subset H of a group G is a subgroup iff

                       ab-1  H,      ∀ a, b  H

Proof: Necessary Part: Suppose that a non-empty subset H of a group G is its subgroup.

              H itself forms a group.
              ⇒  b  H              ⇒     b-1  H.
              Also ∀ a, b  H      ⇒    a, b-1  H.
                                                ⇒    ab-1  H.       (∵ H is a group)

Sufficient Part: Suppose that H is a non-empty subset of a group G such that

                             ∀ a, b  H      ⇒    ab-1  H.
               To prove H is a subgroup of G.
               Clearly associative law holds in H, as it holds in G and elements of H are also elements of G.
Further,
                ∀  H  ⇒ a, a-1  H  ⇒ aa-1  H  e  H
                i.e., identity element exists in H.
                Now e, a  H   ⇒ ea-1  H     ⇒ a-1  H
                ∴ ∀  H ⇒ a-1  H
                i.e., inverses are there in H.
                Also ∀ a, b  H      
                ⇒    a, b-1  H.                  ( inverses are there in H)
                ⇒  a (b-1)-1  H
                ⇒  ab  H.
                So, closure property holds in H.
                H is a group in itself under the operation of G.
                Hence H is a subgroup of G.

Lemma III: A non-empty finite subset H of a group is a subgroup of G iff
                  ab ∈ H, ∀ a, b  H

Proof: Necessary Part: Let a non-empty finite subset H of a group G be its subgroup.

              ∴ H itself is a group.
              ∴ ab ∈ H, ∀ a, b  H                  (By closure property)

Sufficient Part: Suppose that H is a non-empty finite subset of a group G such that

              ab ∈ H, ∀ a, b  H   
               The operations of multplication is a binary operation on H.
              Let a, b, c  H
              ∴ a, b, c  G                                                     [ ⊆ G]
               (ab)c = a(bc)      Since G is a group.
               So, the associative law holds in H under multiplication.
              Firstly we prove that cancellation laws hold in H.
              Let a, b, c  H      such that ab = ac.
              Since ∈ H,        so ∈ G.
              ∴ a-1  G       such that      aa-1 = e = a-1a
              Now ab = ac
              ⇒ a-1(ab) = a-1(ac)
              ⇒ (a-1a)b = (a-1a)c
              ⇒ eb = ec               ⇒ b = c
              ⇒ ab = ac              ⇒ b = c
Similarly, ba = ca               ⇒ b = c
              So. The cancellation laws hold in H.
              ∴ H is a non-empty finite set with an associative binary operation in H and the cancellation laws hold in H.
              ∴ H itself is a group.
              Thus H is a subgroup of G.

No comments:

Post a Comment