Friday, 18 October 2013

Theorems

Theorem 1: A semi-group in which both the equations ax = b and ya = b have a unique solution, is a group. 
(It is also called a definition of  a group)

Proof: Let G be a semi-group under an operation denoted multiplicatively in which both the equations 

ax = b                     ... (1)        and ya = b                            ... (2)
have a unique solution.
To show that G be a group. For this we show that
(i) identity element exists in G. and 
(ii) inverse of each element exists in  G.
For (i) By condition (1). For any element ∈ G, we have
         ax = a, has a unique solution in G.
         ∴ ∃ an element e ∈ G such that ae = a
         Let ∈ G be an element of G. Then by condition (2)
                              ya = b     i.e.,    b = ya
         Now be = (ya)e = y(ae) = ya = b
         ⇒                            be = b
         e is the right identity of G.
         Similarly, by condition (2), for any element ∈ G, we have
         ya = a, has a unique solution in G.
         ∴ ∃ an element f ∈ G such that fa = a and fb = b
         i.e., f is the left identity of G.
         Now              fe = f                        [e is the right identity]
         and               fe = e                        [∵ is the right identity]
         ⇒                   e = f
         ∴ is the identity element of G.
For (ii) Let ∈ G be any element and e be the identity element of G.
         Then by condition (1) and (2) a' , a'' ∈ G such that
                          aa' = e        and          a''a = e
         Now         a'' = a'' e = a'' (aa') = (a'' a)a' = ea' = a'
         Thus inverse of each element in G exists and is unique.
         Hence G is a group.

Theorem 2: Prove that any finite semi-group iff both the cancellation laws hold.

         (It is also called a definition of a group, but for finite sets)

Proof: Let G be a semi-group under an operation denoted multiplicatively.

         Let G be a group, then both the cancellation laws hold.  (by III property in last article)

        Conversely: Let both the cancellation laws hold.

        To prove G is a group.
        Since G is finite.
        Let G = {a1, a2, ... , an} be different elemnets of G.
        O(G) = n.
        ∀ ∈ G, consider S = {a1a, a2a, ... , ana}.
        Due to closed property in G, S ⊆ G.
        Further all the elements of S are different.
        For it, let                aia = aja,  i  j           i.e.,  ai   aj ∈ G.
        Using right cancellation law, we get
                                          ai = aj , which is absurd.
         all the elements of S are different.
         O(S) = n = O(G)
        ⇒ S = G.
        ∀ a, b ∈ G, b ∈ G but G = S ⇒ ∈ S
         let                            b = al
         i.e., ais a solution of the equation ya = b, ∀ a, b ∈ G.
         Consider another set T = {aa1, aa2, ... , aan}.
         T ⊆ G and all the elements of T are different.
         For it, let              aai = aaj,  i  j           i.e.,  ai   aj ∈ G.
         Using left cancellation law, we get
                                          ai = aj , which is absurd.
         all the elements of T are different.
         O(T) = n = O(G)
        ⇒ T = G.
        ∀ a, b ∈ G, b ∈ G but G = T ⇒ ∈ T
         let                            b = aak 
         i.e., ais a solution of the equation ax = b, ∀ a, b ∈ G.
         Thus both the equations ax = b and ya = b ∀ a, b ∈ G have solutions in G.
         Hence G is a group.

2 comments:

  1. Since ax=b has unique solution,therefore
    ∴ ∃ e∈G such that
    ae=a ∀ a∈G ( Here we have proved the existence of right identity. is it not?)

    Similarly ya=b has unique solution,
    ∴ ∃ f∈G, such that
    fa=a ∀ a∈G ( Here we have prove that existence of left identity, is it not?)

    e and f are right and left identity
    ∴ fe=f ( e is right identity )
    fe=e ( f is left identity)
    hence e=f

    if is true
    then why we proved it for b in section given below

    (( ax = a, has a unique solution in G.
    ∴ ∃ an element e ∈ G such that ae = a
    Let b ∈ G be an element of G. Then by condition (2)
    ya = b i.e., b = ya
    Now be = (ya)e = y(ae) = ya = b
    ⇒ be = b

    ))

    ReplyDelete
  2. Play slots for free online at DrMCD Casino
    Play slots online 제천 출장샵 at DrMCD Casino with free demo mode and no deposit required. Play 파주 출장샵 slots for 인천광역 출장샵 free, learn about 제천 출장안마 bonuses, free spins and much 충청북도 출장마사지 more.

    ReplyDelete