Sunday, 20 October 2013

Properties of Subgroups

I. The identity element of a subgroup is same as the identity element of the group.

Proof: Let H be a subgroup of a group G.

              Let e and e' be the identity elements of G and H respectively.
              Let ∈ H be any element.
              ∴    ae' = a'                                                                                     [∵ e' is the identity of H]
              Also ∵ ∈ H and H ⊆ G
               ∈ G
              ∴    ae = a                                                                                       [∵ is the identity of G]
              So, we have ae = ae'
               e = e'                                                                                            [by left cancellation law]
              Here the identity of a group and that of a subgroup is the same.

II. The inverse of any element of a subgroup is the same as the inverse of the element regarded as the element of the group.


Proof: Let e be the identity element of G and H.

              Let ∈ H be any element.
              Since ⊆ G
              ∴ ∈ G.
              Let b be the inverse of a in H and c be the inverse of a in G.
              ba = e            and                 ca = e
               ⇒ ba = ca
               ⇒ b = c                                  [by right cancellation law]
               Hence the inverse of any element of a subgroup is same as the inverse of the same element regarded as an element of the group.

III. The order of any element in a subgroup is the same as the order of the element regarded as the element of the group.


Proof: Let e be the identity element of G and H.

              Let ∈ H such that o(a) = n
              ⇒ a= e        and          a e  for every m < n.
              Also ∈ H   ∈ G and so a∈ G ⇒ o(a) = n in G.
              Hence order of any element in a subgroup is same as the order of the element regarded as the element of the group.

IV. Subgroup of an abelian group is abelian.


Proof: Let H be a subgroup of an abelian group G.

              ∴ ⊆ G
              Let a, b ∈ H be any two elements.
              ∴ a, b ∈ G    ab = ba                         [G is abelian]
              for all a, b ∈ H      we have ab = ba
              Hence H is an abelian subgroup of G.
              The converse of above result is false.
              i.e., A subgroup may be abelian even if G is not abelian.

                        Product of two subgroups:


Let H and K be two subgroups of a group G, then the set HK defined by
HK = {hk : for all ∈ H, k ∈ K} is called the product of the subgroups H and K.

Theorem: If H and K are two subgroups of a group G, then HK is a subgroup of G iff HK = KH.


Proof: Necessary Part: Let H and K be two subgroups of a group G such that HK is also a subgroup of G.

We shall prove that HK = KH.
Let ∈ HK be arbitrary element.
∴ x-1 ∈ HK, as HK is a subgroup of G.
⇒ x-1 hk for some h∈ H, k ∈ K
⇒ (x-1)-1 = (hk)-1
⇒ x = k-1h-1
Since ∈ K and K is a subgroup of G, so k-1 ∈ K.
Similarly, h-1 ∈ H.
∴ k-1h-1 ∈ KH.
⇒ ∈ KH
∴ HK ⊆ KH.
Let now ∈ KH be arbitrary element
 x = kfor some k ∈ K, h∈ H.
⇒ x-1 (kh)-1 h-1k-1 ∈ HK
⇒ x-1 ∈ HK
⇒ (x-1)-1 ∈ HK, as HK is a subgroup of G.
⇒ ∈ HK.
∴ KH ⊆ HK
Thus HK = KH.

Sufficient Part: Suppose that H and K are two subgroups of a group G such that

HK = KH.
We shall prove that HK is a subgroup of G.
Let x, y ∈ HK be arbitrary elements.
∴ x = h1k1   and   y = h2k2  for some hh∈ H and kk∈ K
∴ xy-1 = (h1k1)(h2k2)-1 (h1k1)(k2-1h2-1) = h1(k1(k2-1h2-1))
            = h1((k1k2-1)h2-1)                                                         ... (1)
Now (k1k2-1)h2-1 ∈ KH
⇒ (k1k2-1)h2-1 ∈ HK,         since  HK = KH
⇒ (k1k2-1)h2-1 h3kfor some h∈ H and k∈ K           ... (2)
∴ xy-1 h1(h3k3)                                              [From (1) and (2)]
            = (h1h3)k∈ HK
∴ xy-1 ∈ HK, ∀ x, y ∈ HK.
∴ HK is a subgroup of G.

No comments:

Post a Comment