Monday, 7 October 2013

Linear Spaces

Vector spaces- A set L of elements  , y̅ , z̅ , … are called linear space or vector space (on )
if addition and multiplication by scalars are defined so that the following laws are satisfied for all  , y̅ , z̅  L and λ, μ ∈ ℝ.
    I.   (i)  , y̅  L ⇒   +  y̅  L
         (ii)   +  y̅ =  y̅ +  
         (iii) (  +  y̅) +  z̅ =   +  (y̅ +  z̅)
         (iv) ∃ 0̅ :    + 0̅ =   
         (v) ∃ -  :   + (- )
   II.  (i) λ   L
         (ii) λ(μ ) = (λμ) 
         (iii) (λ + μ)  = λ  + μ 
         (iv) λ(  +  y̅) = λ  + λ y̅
         (v) 1  =  
         (vi)   = 
         (vii) λ0̅ = λ

Test for subsequence- A non-empty subset M of L is a linear space itself, if-
  1.  , y̅ M ⇒   +  y̅  M
  2.   Mλ  ℝ ⇒ λ   M
Linear combinations,basis-
  1. The vector  y̅  is a linear combination of vectors 1 , … , n, if,           y̅ = λ 1 x̅1 + λ 2 x̅2 + … + λ n x̅n, for some scalars λ 1, … , λ n.
  2. The linear hull LH(x1, …, xn) is                                                                {y : y = λ 1x1 + λ 2x2 + … + λ nxnλ i  }
  3. Vectors  1 , … , are  (a) Linearly independent, if                 λ 1 x̅1 + λ 2 x̅2 + … + λ n x̅ 0̅                                                         ⇒ λ i = 0, all i
         (b) Linearly dependent, if ∃ λ 1, … , λ n not all zero :
                         λ 1 x̅1 + λ 2 x̅2 + … + λ n x̅ 
                  (⇔ some is a linear combination of the other)
  4. 1, 2, ... , e̅is a basis of the linear space L and L is n-dimensional, if-
          (i) 1, 2, ... , e̅n are linearly independent.
          (ii) Every   L can be written uniquely,
             x =x1+x22 + ... + xnn

Scalar Product:
  • Let L be a limear space, A scalar  product (x̅, ) is a function L × L → ℝ with the following prperties holding for all x̅, y̅, z̅  L and λ, μ ∈ -
       (a) (x̅, ) = (y̅, )
       (b) (x̅, λy̅ + μ ) = λ(x̅, ) + μ(x̅, )
       (c) (x̅, ≥ 0, (x̅, ) = 0 ⇔ x̅ = 0


  • Length of x̅  : |x̅ | = (x̅, ),
                           |cx̅ | = (c)|x̅ | (scalar)


  • |(x̅, )| ≤ |x̅ | |y̅ | (Cauchy- Schwarz inequality).
  • |x̅ + )| ≤ |x̅ | + |y̅ | (Triangle inequality).
Annihilating Polynomials:

Minimal polynomial- If T is a linear operator on a finite dimensional vector space V over the field F. The minimal polynimial for T is the (unique) monic generator of the ideal of polynomials over F which annihilate T.

The Transpose of a Linear Transformation:
  • let V and W be vector space over the field F. For each linear transformation T from V into W, there is a unique linear transformation Tfrom W* into V* such that 
                       (Ttg)(α) = g(Tα)
          for every g ∈ W* and α ∈ V.
  • Let V and W be vector spaces over the field F, and let T be a linear transformation from V into W. The null space of Tis the annihilator of the range of T. Then V and W are finite dimensional, then
          (i) rank (Tt) = rank (T)
         (ii) the range of Tis annihilator of the null space of T.
  • If V and W are finite dimensional vector space over the field F. B is an ordered basis for V with dual basis B*, B' is an ordered basis for W with dual basis B'*, T is a linear transformation from V into W. A and B are matrices of T and T' relative to B, B' and B'*, B* respectively. Then Bij = Aji.
Invariant Subspaces: Suppose V is a vector space and T a linear operator on V. If W is a subspace of V, then W is invariant subspace of V under T if for each vector α ∈ W, the vector Tα ∈ W
i.e.,  if T(W) is contained in W.

T Conductor of α into W- If W is a invariant subspaces for T and α is a vector in V. The T conductor of α into W is the set ST (α : W), which consists of all polynomials g (over the scalar field) such that g(T) α is in W.

Cyclic-subspaces generated by αIf α is any vector in V, the T-cyclic subspace generated by α is the subspace Z(α : T) of all vectors of the form g(T), α, F[x].
     If Z(α : T) = V then α is called a cyclic vector for T.

No comments:

Post a Comment