Friday 11 October 2013

Group of Permutations

Permutation: Let S be a non-empty set. A permutation on S is defined as a map from S to S which is both one-to-one and onto.

Example: Let A(S) denotes the set of all permutations on a non-empty set S. Then A(S) forms a group under the operation of composition of maps.

Moreover if S contains n elements, then the group A(S) contains n! elements. This group A(s) is called Permutation Group.

Sol: Here, A(S) = The set of all the permutations on S.

          ∴      A(S) = {f : f: → S is a one-one onto map}.
         Let f, g, h ∈ A(S).
          f, g, h are one-one onto maps from S to S.

Closure property: Since f, g are maps from S to S, so f o g is also a map from S to S.

                    f o g : S → S is defined by (f o g )(x) = (g(x)), ∈ S.
         We prove that f o g is one-one as well as onto.
         For one-one:
         Let x1, x∈ S such that 
                ( f o g )(x1) = f o g )(x2
         ⇒        (g(x1)) = (g(x2))
         ⇒             g(x1) = g(x2), Since f is one-one
         ⇒                  x1 = x2Since g is also one-one
         ∴            f o g is one one
         For onto
         Let z  ∈ S.
         Since f: → S is onto and  z  ∈ S, so y  ∈ S such that f (y) = z.
         Since g: → S is onto and  y  ∈ S, so ∃ x ∈ S such that g (y) = y.
        Consider (f o g)(x) = f ((x)) = f (y) = z.
                    f o g is onto.
                   f o g is one-one map of S onto S.
        ∴            f o g is a permutation on S.
        ⇒  f o g ∈ A(S), ∀  f, g ∈ A(S).
        Thus, A(S) is closed under composition of maps.

Associativity: Let ∈ S be an arbitrary element.
        For all f, g, h ∈ A(S),
          ((f o g) o h )(x) = (f o g)(h(x)) = f (g (h (x)))
             (f o (g o h ))(x) = f ((g h)(x)) = f ((h (x)))
          ((f o go h )(x) = (f o (g o h ))(x), ∀ ∈ S.
          f o go h  = f o (g o h )
       Thus, associativity property holds in A(S).

Existence of Identity: Define a map i : → S by 
        i(x) = x, ∀ ∈ S
        Let x1 + x2 S. Then i(x1) = i(x2)
        ⇒ x1 = x2
            i is one-one.
        If ∈ S, then i (x) = x
          is onto.
          is one-one map of S onto itself.
        ∴  i is a permutation on S.
        So, i ∈ A(S).
        Also (f o i)(x) = f (i (x)) = f (x), ∀ ∈ S.
       f o i = f.
       Similarly i o f = f,  f ∈ A(S).
       i is identity element of A(S).

Existence of inverse:  For all f ∈ A(S), f is one-one and onto map of S to S.

       f is invertible map and -1 is also one-one and onto.
       -1 is a permutation on S.
       -1 ∈ A(S).
      Also -1 → S is defined by -1 (y) = x    iff (x) = y.
      Let ∈ S.
       f (x) ∈ S.
      Let f (x) = y
      y ∈ S.
      Also, f (x) = y         -1 (y) = x .
      Now (-1 o f)(x) = -1 (f (x)) = -1 (y) = x = i (x)
      So, (-1 o f)(x) = (x), ∀ ∈ S.
      ⇒ -1 o f = i, similarly, f  o -1 = i.
      ∴  -1 is inverse of f.
        A(S) forms a group under the operation of composition of maps.
      Further, if S contains n elements, then
      The number of elements in A(s)
              = The number of permutations of S.
              = The number of arrangements of n elements.
              = n!.

No comments:

Post a Comment