Sunday 6 October 2013

Linear System of Equations and Determinants

Linear system of m equations in n unknowns x1, x2, …, x is the set of equations
          a11x1 + a12x2 + … + a1nxn = b1
             a21x1 + a22x+ … + a2nx= b2
             .
             .
             .
             am1x1 + am2x+ … + amnx= bm
here aij are called coefficients(which are given numbers)


  1. If all b (j = 1, 2, ..., m) are zero then homogeneous system.
  2. If atleast one b (j = 1, 2, ..., m) is not zero then non-homogeneous.
  3. Solution- set of numbers x1, x2, …, xn which satisfies all m- equations.
  4. Solution vector- Ordered Set of numbers [x1, x2, …, xn] which satisfies all m- equations.
  5. If the above is homogeneous system, then it has atleast one trivial solution.
              x1 =x2 = x3 = … = xn = 0

Rank of Matrix: Linear Independence and Dependence
Let 1, 2, ..., m are m- vectors, then
Linear combination of m-vectors: 
c1c2+ … + cmcii  ∀ i= 1, 2,..., m 
where, c1, c2, ..., cm are any scalars.

Linearly independent vectors- If  ci
 

∀ i= 1, 2,..., m = 0̅, when all ci's are zero. then
( 1, 2, ..., mare linearly independent vectors.

Linearly dependent vectors-  

If  cii  ∀ i= 1, 2,..., m = 0̅, for some ci's may be zero, then
( 1, 2, ..., m) are linearly dependent vectors.

Sub-matrix- A matrix obtained from a matrix, by omitting rows and columns.


Rank of a matrix- The maximum number of linearly independent row vectors of a matrix

  A = [ajk] is called the rank of A or (rank A).

Nullity of a matrix-  If A is a square matrix of order  then nullity of matrix A,

                 N(A) = n - rank A.

Some related theorems:

  1. The rank of a matrix A equals the maximum number of linearly independent columns vectors of A.
  2. Matrix A and its transpose Ahave same rank.
  3. Row-equivalent matrix have the same rank.
  4. Rank of the product of two matrices cannot exceed the rank of either factor.

Determinants:
The n-order determinant of a square matrix A = [aij] of order n, is a number,
                  det. A = |A| = | aij |
                                        = aj1cj1 + … + ajncjn , j = 1,2,… or n
                                        = a1kc1k + … + ankcnk , k = 1,2,… or n
where, cjk   = (-1)j+k Mjk
                         = Co-factor of  aik in |A|
and,      mjk = Determinant of order (n - 1), obtained by deleting the rows and columns of entry ajk
                       (i.e., j-th row and k-th column).
                            = minor of  ajk in |A|.
Geometrically,
          det A = ± volume of the n-dimensional parallelopiped spanned by the column (or row) vectors of A.

Some properties of Determinants: Let A be a determinant of order n.

  1. det AT= det A
  2. |AB| = |A| |B|
  3. det A-1= 1/det A
  4. det I = 1
  5. det (xA) = xndet A
  6. det A = λ. . . λ= product of eigen values.
  7. If all elements of a row (or column) are multiplied by constant k, then determinant is multiplied by k.
  8. Exchange of two rows (or columns) change the sign of the determinant.
  9. Determinant does not change if one row (or columns) multiplied by a constant is added to another row (or column)
  10. Determinant equals to zero, if
    (a) All elements of a row (column) are zero, or
    (d) Two rows (columns) coincide.
Rank of a matrix in terms of determinant- An × n matrix A = [aij] has rank r ≥ 1 iff A has × r sub matrix with non-zero determinant.
If A is square matrix of order n, its rank is a iff det A ≠ 0.

Cramer's Theorem (Solution of linear system by determinants):
(a
If a linear system of n-equations has the same number of unknowns x
, . . . ,  xn
            a11x1 + a12x+ … + a1nx= b1
              a21x1 + a22x+ … + a2nx= b2
             .
             .
             .
             an1x1 + an2x+ … + annx= bn
                      ⇔   = 
has a non-zero coefficient determinant D = det A, the system  has precisely one solution. This solution is given by the formulas
           x= D1/D ,  x= D2/D, . . . , x= Dn/D (Cramer's Rule)
where Dis the determinant obtained from D by replacing in D the k-th column by the column with entries b, . . . ,  bn
If the system is homogeneous and D ≠ 0, then it has only the trivial solution x0 , . . . ,  x= 0.
If D = 0, the homogenoeous system also hace non-trivial solutions.

No comments:

Post a Comment