Tuesday, 8 October 2013

Polynomial over a Number System

Polynomial: Let K be any number system and x a formal symbol (called an indeterminent or a variable), then an expression of the form a0 + a1x + a2x2 + … + aixi + …, where ai's are the elements of the number system K, and only finitely many of ai's are non-zero is called a polynomial in x over K.
Alternatively, an expression of the form 
a0 + a1x + a2x2 + … + aixi + … is said to be a polynomial over a number system K if  a∈ K for all i = 0, 1, 2, ... and there exists a non-negative integer m such that  a= 0 for all ≥ m.
The polynomials in x over number system K are usually denoted by the symbols f(x), g(x), h(x) etc.
Let f(x) = a0 + a1x + a2x2 + … + aixi + … be a polynomial in x over the number system K, then
        (i) The expression a0 , a1x , a2x2 , … , aixi , … are called the terms of the polynomial f(x).
       (ii) The numbers a0 ,a1a2, … , ai, …  are called the coefficients of the polynomial f(x), and the number  ais called the coefficient of xi.
       (iii) ais called the constant term of the polynomial f(x).
       (iv) Let f(x) = a0 + a1x + a2x2 + … + anxn + 0xn+1 + 0xn+2 + … + an 0, 
             then f(x) is said to be a polynomial of degree n,
             the coefficient ais called the  leading coefficient of f(x) and the term anxis called the leading term of f(x), if the leading coefficient is 1,then f(x) is called a monic polynomial.

Equality of two Polynomials:
Let f(x) = a0 + a1a2x2 + … + anxn + ... and g(x) = b0 + b1b2x2 + … + bmxm + ... be two polynomials in x over the same number system K, then f(x), g(x) are said to be equal written as f(x) = g(x), iff ai bfor all  0
i.e., iff all their corresponding coefficients are equal.

The polynomials 5 - 7x, 5 + 0x +(-7)x+ 0xare equal while the polynomials 3+x, 3+x3 are not equal.


Degree of a Polynomial:
Let f(x) = a0 + a1x + a2x2 + … + anxn + ... be a non-zero polynomial over a number system K. If an  0 and ai = 0 for all i >n then n is called the degree of f(x), it is written as 
deg f(x)=n.

Note 1: The degree of zero polynomial is not defined.

Note 2: The degree of a non-zero polynomial is always a non-negative integer.

Note 3: The degree of a non-zero polynomial is the index of power of x in its leading term.

                     Operations on Polynomials:
Addition of Polynomials: Let  f(x) = a0 + a1x + a2x2 + … + aixi + … and 
 g(x) = b0 + b1x + b2x2 + … + bixi + … be two polynomials in (an indeterminate x) over a number system K, then polynomial c0 + c1x + c2x2 + … + cixi + … where cabi for every ≥ 0 is called the sum of the polynomials f(x) and g(x), it is denoted by f(x) + g(x).
Thus f(x) + g(x) = (ab0) + (ab1)x + ... + (a+ bi)xi + ...
    i.e., the sum of two polynomials f(x)and g(x)is a polynomial in which the coefficient of xi  is the sum of the soefficient of xi  in f(x) and the coefficient of xi  in g(x) for every ≥ 0.

Subtraction of Polynomials: Let f(x), g(x) be two polynomials in over a number system K, then the difference of  f(x) and g(x) is denoted by f(x) - g(x) and it is defined as f(x) - g(x) = f(x) + (-g(x)).

     Thus the difference of the polynomials f(x) and g(x) is equal to the sum of the polynomials  f(x) and -g(x).

Multiplication of Polynomials: 

Let  f(x) = a0 + a1x + a2x2 + … + aixi + … and 
      g(x) = b0 + b1x + b2x2 + … + bixi + … be two polynomials in (an indeterminate x) over a number system K, then polynomial c0 + c1x + c2x2 + … + cixi + … where ca0bi a1bi-1 + ... + arbi-r + ... + aib0 =  arbs
such that r + s = i and and rs are non-negative integers.
i.e., ≤ ≤ i, ≤ ≤ is called the product of the polynomials f(x) and g(x), it is denoted by f(x)g(x).
     Thus if f(x) = a0 + a1x + a2x2 + … + aixi + …  and 
                 g(x) = b0 + b1x + b2x2 + … + bixi + …, then
           f(x)g(x) = a0b(a0ba1b0)x + (a0ba1ba2b0)x+ ... + (a0b1 + a1bi-1 + ... +aib0)x+ ...

No comments:

Post a Comment