Thursday 10 October 2013

Some Examples of Groups

Example 1: The set S = {0}, under the operation of useal addition of integers, is an abelian group of order one.

Sol.  Closure Property: For all a, b ∈ S.
                 a = 0, b = 0, a + b ∈ S as 0 + 0  = 0 ∈ S.
          Thus closure property holds in S.

         Associativity: We know addition of integers is associative
         i.e., (a + b) + c = a + (b + c) ∀ a, b, c ∈ S.
         Here a = 0, b = 0, c = 0 and (0 + 0) + 0 = 0 + (0 + 0)
         Thus associative property holds in S.

         Existence of identity: ∀ ∈ S, there exist 0 ∈ S such that
                               a + 0 = a = 0 + a
        Here a = 0 and 0 + 0 = 0 = 0 + 0.
        Thus 0 ∈ S works for the identity element of S.

       Existence of inverse: ∀ ∈ S, there exist -a ∈ S such that
                              a + -(a) = 0 = (-a) + a
        Here a = 0 and -a = -0 = 0.
        Thus every element of S has inverse.
        Since all the axioms of a group are satisfied. Hence 
<S, +> is a group.
        Also addition of integers is commutative
       i.e.,        a + b = b + a ∀ a, b ∈ S.
       Here     0 + 0 = 0 + 0.   S contains only one element.
       Therefore, <S, +> is ab abelian group of order one.

Example 2: The set S = {-1, 1} under the operation of usual multiplication of integers is an abelian group of order two.

Sol: Closure Property: We know
                                        1 . 1 = 1, 1 . (-1) = -1, (-1) . 1 = -1
        and                         (-1) . (-1) = 1.
            ∀ a, b ∈ S ⇒ a . b ∈ S.
       Thus closure property holds in S.

       Associativity: We know multiplication of integers is associative
       i.e.,                   (a . b) . c = a . (b . c) ∀ a, b, c ∈ S.
      Thus associative property holds in S.

       Existence of identity: Since 1 . 1 = 1 = 1 . 1 and (-1) . 1 = -1 = 1 . (-1)
       ∴ ∀ a, b ∈ S, ∃ 1 ∈ S such that a . 1 = a = 1 . a
       The element 1 ∈ S works for identity element in S.

      Existence of inverse: Since 1 . 1 = 1 = 1 . 1
                                            and  (-1) . (-1) = 1 = (-1) . (-1)
       i.e., inverse of 1 is 1 and inverse of -1 is -1.
       ∴    every element of S has inverse in S.
      Therefore all the axioms of a group are satisfied. Hence <S, .> is a group.
      Moreover, multiplication is commutative
      i.e.,   a . b = b . a ∀ a, b ∈ S
      and S contains only two elements.
      Thus <S, .> is an abelian group of order two.

Example 3: Give an example of a semi-group, which is not a group.

Sol: Let ' = Set of all non-negative integers.
         The operation is the usual addition of integers.
         Closure Property:  We know the sum of two non-negative integers is a non-negative                integer
         i.e., ∀ a, b ∈ ', a + b ∈ '
         ∴ closure property holds in '.
       
         Associativity: We know addition of non-negative integers is associative
          i.e., ∀ a, b ∈ ', (a + b) + c = a + (b + c)
         Thus associative property holds in '.
         Therefore <' , +> is semi-group.
          
         Existence of identity: Since ∀ ∈ ',  there exist 0 ∈ ' such that
                               a + 0 = a = 0 + a.
          Thus 0 ∈ ' works for the identity element.

         Non-Existence of inverse: For any ≠ 0 ∈ ', there exists no non-negative integers                 ∈ ' such that
                                      a + b = 0
         Thus inverse of a does not exist.
          ∴    <', +> is not a group.

Example 4: The set Q* of all non-zero rational numbers forms an infinite abelian group under the operation of multiplication of rational numbers.

Sol: Closure Property: We know that the product of two non-zero rational numbers is also a non-zero rational number.
        i.e.,            a . b  Q*, ∀ a, b  Q*.
     
        Assiciativity: We know that multiplication of rational numbers is an associative operation.
        ∴          (a . b) . c = a . (b . c) ∀ a, b, c  Q*.
      Thus associative property holds in Q*.

      Existence of identity: There exist rational number 1 ∈ Q* such that
                    a . 1 = a = 1 . ∀ ∈ Q*.
      Thus, The element 1 ∈ Q* works for identity element in Q*.

      Existence of inverse: For all ∈ Q* , ∃ (1/a) ∈ Q* such that
                                            a . (1/a) = 1 = (1/a) . a.
       Thus, the element 1/a is the inverse of the element ∈ Q*.
       Therefore all the axioms of a group are satisfied. Hence <Q*, .> is a group.
      Moreover, multiplication is commutative
      i.e.,   a . b = b . a ∀ a, b  Q*.
      and Q* contains an infinite number of elements.
      Thus <Q*, .> is an infinite abelian group.


No comments:

Post a Comment