Wednesday 9 October 2013

Quadratic Residues

Quadratic residue mod p: If congruence x2 n (mod p) has no solution, then n is quadratic nonresidue mod p denoted by (np).

Jacobi symbol: If P is a positive odd integer with prime factorization

                                P = piai, i = 1, 2, ... , r.
              Then Jacobi symbol (n/P) for all integer is 
                             (n/P) = piaii = 1, 2, ... , r
             where (n/pi) is Legendre symbol and (n/1) = 1.

Reduced residue system modulo m: It is a set of (m) integers, incongruent modulo m, each of which is relatively prime to m.
          Here (m) is Euler's totient.


  • Chinese remainder theorem: Assume m1, m2, … , marepositive integers, relatively prime in pairs : (mmk) = 1 if ≠ k.
         Let b1, b2, … , bbe arbitrary integers. Then the system of congruences
                          ≡ b(mod m1)
                          .
                          .
                          .
                         ≡ b(mod mr)
         has exactly one solution modulo the product m1, m2, … , m.
  • Assume m1, m2, … , mare relatively prime in pairs. Let b1, b2, … , bbe arbitrary integers and let a1, a2, … , ar  satisfy (amk) = 1 for k = 1, 2, ... , r. Then the linear system of congruences
                       a1≡ b(mod m1)
                        .
                        .
                        .
                      ar≡ b(mod mr)
        has exactly one solution modulo m1, m2, … , m.
  • Let f be a polynomial with integer coefficients, let m1, m2, … , mr be positive integers relatively prime in pairs and let m =  m1 m2 …  mrThen the congruence
                    f(x) ≡ 0 (mod m)                                                   ... (i)
         has a solution iff each of the congruences,                                              f(x) ≡ 0 (mod mi), i = 1, 2, ... , r                          ... (ii)
         has a solution. Moreovere if v(m) and v(midenote the number of solutions of (i) and (ii) respectively, then                                  v(m) = v(m1v(m2) ... v(mr).
  • The set of lattice points in the plane visible from the origin contains arbitrarily large square gaps. That is, given any integer k > 0, there exist a lattice point (a, b) such that none of the lattice point,                                                        (a + r, b + s), 0 <  k, 0 <  k
          is visible from the origin.

No comments:

Post a Comment